首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6147篇
  免费   482篇
  国内免费   502篇
  7131篇
  2024年   23篇
  2023年   111篇
  2022年   221篇
  2021年   369篇
  2020年   273篇
  2019年   268篇
  2018年   288篇
  2017年   224篇
  2016年   313篇
  2015年   424篇
  2014年   512篇
  2013年   518篇
  2012年   533篇
  2011年   491篇
  2010年   309篇
  2009年   293篇
  2008年   325篇
  2007年   265篇
  2006年   229篇
  2005年   221篇
  2004年   159篇
  2003年   118篇
  2002年   107篇
  2001年   68篇
  2000年   62篇
  1999年   74篇
  1998年   49篇
  1997年   31篇
  1996年   33篇
  1995年   41篇
  1994年   24篇
  1993年   23篇
  1992年   24篇
  1991年   14篇
  1990年   17篇
  1989年   13篇
  1988年   14篇
  1987年   13篇
  1986年   11篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1979年   5篇
  1978年   1篇
排序方式: 共有7131条查询结果,搜索用时 0 毫秒
81.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
82.
Type 2 diabetes(T2D)is a chronic metabolic disease characterized by insulin resistance and hyperglycemia,which is ultimately linked to the loss of pancreaticβ-cells and their function[1].Understanding the pathological mechanisms ofβ-cell dysfunction in T2D may lead to development of new therapeutic approaches.Recently,compelling evidence suggests that members of the nuclear receptor 4A(NR4A)subgroup play a pivotal role inβ-cell loss[2].Nor1,also known as NR4A3,belongs to the NR4A subfamily,which also includes Nur77(NR4A1)and Nurr1(NR4A2),and is defined as a true orphan nuclear receptor with an unknown endogenous ligand or ligand independent[3].As a regulator of gene expression located in the nucleus,Nor1 exhibits tissue-specific expression,which selectively controls diverse biological processes,including cell proliferation,apoptosis,differentiation,immune homeostasis,and fuel utilization[4].Thus far,it was reported that Nor1 is involved in numerous pathologies such as cancer,inflammatory diseases,and Parkinson’s disease[4].  相似文献   
83.
盐生荒漠地表水热与二氧化碳通量的季节变化及驱动因素   总被引:4,自引:0,他引:4  
以古尔班通古特沙漠南缘原始盐生荒漠为对象,利用涡度相关法,对原始盐生荒漠地表水热、二氧化碳通量进行了连续观测,对通量的季节变化、浅层土壤水分条件改变对盐生荒漠植物群落水汽、二氧化碳通量以及水分利用效率的影响进行了系统的分析.结果表明:净辐射通量、潜热通量和二氧化碳通量都具有明显的季节变化趋势,而显热通量的季节变化不明显.在有效能量的分配上,显热通量是有效能量的主要输出项.在降水影响期和非影响期,二氧化碳通量没有明显的变化;而在非降水影响期潜热通量明显降低,表明土壤水分处于亏缺状态,但二氧化碳通量并没有降低的趋势,而与前期保持高度的一致性.以此可以推断,该荒漠盐生植物群落并不以降水为主要水分来源,降水后水汽通量和二氧化碳通量变化的不一致性是该原始盐生荒漠独特植物特征决定的.降水影响期原始盐生荒漠植物群落的水分利用效率低于非影响期,是由于降水后土壤蒸发迅速增加,而植物蒸腾与光合并未随之增加造成的.  相似文献   
84.
Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.  相似文献   
85.
Forty years ago, a high frequency of lethal giant larvae (lgl) alleles in wild populations of Drosophila melanogaster was reported. This locus has been intensively studied for its roles in epithelial polarity, asymmetric neural divisions, and restriction of tissue proliferation. Here, we identify a high frequency of lgl alleles in the Bloomington second chromosome deficiency kit and the University of California at Los Angeles Bruinfly FRT40A-lethal P collection. These unrecognized aberrations confound the use of these workhorse collections for phenotypic screening or genetic mapping. In addition, we determined that independent alleles of insensitive, reported to affect asymmetric cell divisions during sensory organ development, carry lgl deletions that are responsible for the observed phenotypes. Taken together, these results encourage the routine testing of second chromosome stocks for second-site alleles of lgl.  相似文献   
86.
Among bacteria, we have previously shown that species that are capable of rapid growth have stronger selection on codon usage than slow growing species, and possess higher numbers of rRNA and tRNA genes. This suggests that fast-growers are adapted for fast protein synthesis. There is also considerable evidence that codon usage is influenced by accuracy of translation, and some authors have argued that accuracy is more important than speed. Here we compare the strength of the two effects by studying the codon usages in high and low expression genes and on conserved and variable sites within high expression genes. We introduce a simple statistical method that can be used to assess the significance and the strength of the two types of bias in the same sets of sequences. We compare our statistical measure of codon bias to the common used codon adaptation index, and show that the new measure is preferable for three reasons for the purposes of this analysis. Across a large sample of bacterial genomes, both effects from speed and accuracy are clearly visible, although the speed effect appears to be much stronger than the accuracy effect and is found to be significant in a larger proportion of genomes. It is also difficult to explain the correlation of codon bias in the high expression genes with growth rates and numbers of copies of tRNA and rRNA genes on the basis of selection for accuracy. Hence we conclude that selection for translational speed is a dominant effect in driving codon usage bias in fast-growing bacteria, with selection for accuracy playing a small supplementary role.  相似文献   
87.
The GM2 activator protein (GM2AP) is an accessory protein required for the enzymatic conversion of GM2 to GM3 by hydrolases in the lysosomal compartments of cells. Here, GM2AP interactions with lipid vesicles are investigated by sucrose-loaded vesicle sedimentation and gel filtration assays, and the effects of pH and lipid composition on membrane binding and lipid extraction are characterized. The sedimentation experiments allow for facile quantification of the percentage of protein in solution and on the bilayer surface, with detailed analysis of the protein:lipid complex that remains in solution. Optimum binding and ligand extraction is found for pH 4.8 where <15% of the protein remains surface associated regardless of the lipid composition. In addition to extracting GM2, we find that GM2AP readily extracts dansyl-headgroup-labeled lipids as well as other phospholipids from vesicles. The ability of GM2AP to extract dansyl-DHPE from vesicles is altered by pH and the specific ligand GM2. Although the unique endosomal lipid, bis(monoacylglycero)phosphate, is not required for ligand extraction, it does enhance the extraction efficiency of GM2 when cholesterol is present in the vesicles.  相似文献   
88.
Tumour‐derived exosomes have been shown to induce pre‐metastatic niche formation, favoring metastatic colonization of tumour cells, but the underlying molecular mechanism is still not fully understood. In this study, we showed that exosomes derived from the LLC cells could indeed significantly enhance their intrapulmonary colonization. Circulating LLC‐derived exosomes were mainly engulfed by lung fibroblasts and led to the NF‐κB signalling activation. Further studies indicated that the exosomal miR‐3473b was responsible for that by hindering the NFKB inhibitor delta's (NFKBID) function. Blocking miR‐3473b could reverse the exosome‐mediated NF‐κB activation of fibroblasts and decrease intrapulmonary colonization of lung tumour cells. Together, this study demonstrated that the miR‐3473b in exosomes could mediate the interaction of lung tumour cells and local fibroblasts in metastatic sites and, therefore, enhance the metastasis of lung tumour cells.  相似文献   
89.
Fine particulate matter (PM2.5) is the primary air pollutant that is able to induce airway injury. Compelling evidence has shown the involvement of IL‐17A in lung injury, while its contribution to PM2.5‐induced lung injury remains largely unknown. Here, we probed into the possible role of IL‐17A in mouse models of PM2.5‐induced lung injury. Mice were instilled with PM2.5 to construct a lung injury model. Flow cytometry was carried out to isolate γδT and Th17 cells. ELISA was adopted to detect the expression of inflammatory factors in the supernatant of lavage fluid. Primary bronchial epithelial cells (mBECs) were extracted, and the expression of TGF signalling pathway‐, autophagy‐ and PI3K/Akt/mTOR signalling pathway‐related proteins in mBECs was detected by immunofluorescence assay and Western blot analysis. The mitochondrial function was also evaluated. PM2.5 aggravated the inflammatory response through enhancing the secretion of IL‐17A by γδT/Th17 cells. Meanwhile, PM2.5 activated the TGF signalling pathway and induced EMT progression in bronchial epithelial cells, thereby contributing to pulmonary fibrosis. Besides, PM2.5 suppressed autophagy of bronchial epithelial cells by up‐regulating IL‐17A, which in turn activated the PI3K/Akt/mTOR signalling pathway. Furthermore, IL‐17A impaired the energy metabolism of airway epithelial cells in the PM2.5‐induced models. This study suggested that PM2.5 could inhibit autophagy of bronchial epithelial cells and promote pulmonary inflammation and fibrosis by inducing the secretion of IL‐17A in γδT and Th17 cells and regulating the PI3K/Akt/mTOR signalling pathway.  相似文献   
90.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号